Philippe Leray, Professor of University / Univ. Nantes / LINA UMR 6241 / Equipe DUKe, ran a Seminar@SystemX on January 19 at IRT SystemX (Bâtiment 863, Salle Bienvenüe (2ème étage)) on the subject « Advances in Learning with Bayesian Networks ».

Abstract

Bayesian networks (BNs) are a powerful tool for graphical representation of the underlying knowledge in the data and reasoning with incomplete or imprecise observations. BNs have been extended (or generalized) in several ways, as for instance, causal BNs, dynamic BNs, Relational BNs, … In this talk, we will focus on Bayesian network learning. BN learning can differ with respect to the task : generative model versus discriminative one ? Then, the learning task can also differ w.r.t the nature of the data : complete data, incomplete data, non i.i.d data, number of variables number of samples, data stream, presence of prior knowledge …Given the diversity of these problems, many approaches have emerged in the literature. I will present a brief panorama of those algorithms and describe our current works in this field.

Biography

Philippe Leray graduated from a French engineering school in Computer Sciences in 1993. He also got a Ph.D. (Computer Sciences) from the University Paris 6 in 1998, about the use of Bayesian and neural networks for complex system diagnosis. Since 2007, He is a full professor at Polytech’Nantes, a pluridisciplinary French Engineering University. He has been working more intensively on Bayesian networks field for the past 15 years with interests for theory (Bayesian network structure learning, causality) and application (reliability, intrusion detection, bio-informatics). He is also the head of the DUKe (Data User Knowledge) research group, in the Nantes Computer Science lab.

Download

- SUBSCRIPTION NEWSLETTER

Subscribe to IRT SystemX's
newsletter

and receive every month the latest news from the institute: