Advances in Learning with Bayesian Networks

Philippe Leray
philippe.leray@univ-nantes.fr

DUKe (Data User Knowledge) research group, LS2N UMR 6004, Nantes, France
Séminaire IRT SystemX, 19 jan. 2017

LS2N - UMR CNRS 6004

1er janvier 2017, fusion de 2 UMR

- IRCCyN (Institut de Recherche en

Communications et Cybernétique de Nantes)
"N1N

- LINA (Laboratoire d'Informatique de Nantes Atlantique)
- 450 personnes (≈ 215 permanents)
- 5 axes thématiques
- Conception et Conduite de Systèmes
- Robotique, Procédés, Calcul
- Signaux, Images, Ergonomie et Langues
- Science du Logiciel et des Systèmes Distribués
- Science des Données et de la Décision
- 5 établissements support
- Ecole Centrale de Nantes
- Université de Nantes
- Institut Mines Telecom Atlantique
- CNRS, INRIA

DUKe research group

Research group in Data Sciences

- 16 permanents
- 3 associates
- 12 PhD students
- 2 postdoc/engineers

DUKe scientific approach

Proposing « agile », « user in the loop» Data-mining / Machine Learning algorithms

Motivations

- Bayesian networks (BNs) are a powerful tool for graphical representation of the underlying knowledge in the data and reasoning with incomplete or imprecise observations.

Motivations

- Bayesian networks (BNs) are a powerful tool for graphical representation of the underlying knowledge in the data and reasoning with incomplete or imprecise observations.
- BNs have been extended (or generalized) in several ways, as for instance, causal BNs, dynamic BNs, relational BNs, ...

Initial Model

Transition Model

Motivations

Victim identification system

Turbo-codes (GSM, ...)

Noisy information bits (visible)

Information bits (hidden)

Codeword Fragments (hidden)

Anti Spam

Motivations

We would like to learn a BN from data... but which kind of data ?

- complete

```
A B C D
0 1 2 3
4 6 1 0
2 356
1326
3 8 9 0
1 2 4 5
1437
8 5 4 3
```


Motivations

We would like to learn a BN from data... but which kind of data ?

- complete /incomplete [François 06]

```
A B C D
0 1 2 3
4 ? 1 0
2 5 ?
1 3 ? 6
3 8 9 0
1 4 4 ?
1 ? 3 7
8 5 4 3
```


Motivations

We would like to learn a BN from data... but which kind of data ?

- high n,

A	B	C	D	\ldots	\ldots	\ldots	\mathbf{X}_{100000}
0	1	2	3	\ldots	\ldots	\ldots	7
4	6	1	0	\ldots	\ldots	\ldots	5
2	3	5	6	\ldots	\ldots	\ldots	4
			\ldots				\ldots
			\ldots				\ldots
			\ldots				\ldots
1	3	2	6	\ldots	\ldots	\ldots	7
3	8	9	0	\ldots	\ldots	\ldots	1
1	2	4	5	\ldots	\ldots	\ldots	3
1	4	3	7	\ldots	\ldots	\ldots	2
8	5	4	3	\ldots	\ldots	\ldots	4

Motivations

We would like to learn a BN from data... but which kind of data ?

- high $n, n \gg p$ [Ammar 11]

A	B	C	D	\ldots	\ldots	\ldots	\mathbf{X}_{100000}
0	1	2	3	\ldots	\ldots	\ldots	7
4	6	1	0	\ldots	\ldots	\ldots	5
2	3	5	6	\ldots	\ldots	\ldots	4

Motivations

We would like to learn a BN from data... but which kind of data ?

- stream [Yasin 13]

A	B	C	D	\ldots	\ldots	\ldots	\mathbf{x}_{100000}	
0	1	2	3	\ldots	\ldots	\ldots	7	
4	6	1	0	\ldots	\ldots	\ldots	5	
2	3	5	6	\ldots	\ldots	\ldots	4	
			\ldots				\ldots	
			\ldots				\ldots	
			\ldots				\ldots	
1	3	2	6		\ldots	\ldots		\ldots
3	8	9	0	\ldots	\ldots	\ldots	7	
1	2	4	5	\ldots	\ldots	\ldots	3	
1	4	3	7	\ldots	\ldots	\ldots	2	
8	5	4	3	\ldots	\ldots	\ldots	4	

Motivations

We would like to learn a BN from data... but which kind of data ?

- + prior knowledge / ontology [Ben Messaoud 13]

A	B	C	D
0	1	2	3
4	6	1	0
2	3	5	6
		\cdots	
1	3	2	
3	8		
1	2	0	
1	2	4	5
1	4	3	7
8	5	4	3

Motivations

We would like to learn a BN from data... but which kind of data ?

- structured data [Ben Ishak 15, Coutant 15, Chulyadyo 16]

Motivations

We would like to learn a BN from data... but which kind of data ?

- not so structured data [Elabri]

Motivations

Even the learning task can differ : generative

- modeling $P(X, Y)$
- no target variable
- more general model
- better behavior with incomplete data

Motivations

Even the learning task can differ: generative vs. discriminative

- modeling $P(X, Y)$
- no target variable
- more general model
- better behavior with incomplete data
- modeling $P(Y \mid X)$
- one target variable Y
- dedicated model

Motivations

Even the learning task can differ : generative vs. discriminative

- modeling $P(X, Y)$
- no target variable
- more general model
- better behavior with incomplete data

Objectives of this talk

- how to learn BNs in such various contexts ?
- state of the art : founding algorithms and recent ones
- pointing out our contributions in this field

Outline

(1) BN learning

- Definition
- Parameter learning
- Structure learning
(2) Dynamic BN learning
- Definition
- Learning
(3) Relational BN learning
- Definitions
- Learning with a relational DB
- Learning with a Graph DBThe end

[Pearl, 1985]

Definition

G qualitative description of conditional dependences / independences between variables
directed acyclic graph (DAG)
Θ quantitative description of these dependences
conditional probability distributions (CPDs)

Bayesian network

[Pearl, 1985]

Definition

G qualitative description of conditional dependences / independences between variables
directed acyclic graph (DAG)
Θ quantitative description of these dependences conditional probability distributions (CPDs)

Main property

- the global model is decomposed into a set of local conditional models

One model... but two learning tasks

$\mathrm{BN}=$ graph G and set of CPDs Θ

One model... but two learning tasks

BN = graph G and set of CPDs Θ

- parameter learning / G given

One model... but two learning tasks

BN = graph G and set of CPDs Θ

- parameter learning / G given
- structure learning

Parameter learning (generative)

Complete data \mathcal{D}

- max. of likelihood (ML) : $\hat{\theta}^{M V}=\operatorname{argmax} P(\mathcal{D} \mid \theta)$
- closed-form solution :

$$
\begin{gathered}
\hat{P}\left(X_{i}=x_{k} \mid \operatorname{Pa}\left(X_{i}\right)=x_{j}\right)=\hat{\theta}_{i, j, k}^{M V}=\frac{N_{i, j, k}}{\sum_{k} N_{i, j, k}} \\
N_{i, j, k}=n b \text { of occurrences of }\left\{X_{i}=x_{k} \text { and } \operatorname{Pa}\left(X_{i}\right)=x_{j}\right\}
\end{gathered}
$$

Parameter learning (generative)

Complete data \mathcal{D}

- max. of likelihood (ML) : $\hat{\theta}^{M V}=\operatorname{argmax} P(\mathcal{D} \mid \theta)$
- closed-form solution :

$$
\begin{gathered}
\hat{P}\left(X_{i}=x_{k} \mid \operatorname{Pa}\left(X_{i}\right)=x_{j}\right)=\hat{\theta}_{i, j, k}^{M V}=\frac{N_{i, j, k}}{\sum_{k} N_{i, j, k}} \\
N_{i, j, k}=n b \text { of occurrences of }\left\{X_{i}=x_{k} \text { and } \operatorname{Pa}\left(X_{i}\right)=x_{j}\right\}
\end{gathered}
$$

Other approaches

$P(\theta) \sim \operatorname{Dirichlet}(\alpha)$

- max. a posteriori $(M A P): \hat{\theta}^{M A P}=\operatorname{argmax} P(\theta \mid \mathcal{D})$
- expectation a posteriori $(E A P): \hat{\theta}^{E A P}=\mathrm{E}(P(\theta \mid \mathcal{D}))$

$$
\hat{\theta}_{i, j, k}^{M A P}=\frac{N_{i, j, k}+\alpha_{i, j, k}-1}{\sum_{k}\left(N_{i, j, k}+\alpha_{i, j, k}-1\right)} \quad \hat{\theta} E A P=\frac{\hat{N}_{i, j, k}+\alpha_{i, j, k}}{\sum_{k}\left(N_{i, j, k}+\alpha_{i, j, k}\right)}
$$

Parameter learning (generative)

Incomplete data

- no closed-form solution
- EM (iterative) algorithm [Dempster, 77], convergence to a local optimum
- this Bayesian updating can include a forgetting factor

Parameter learning (generative)

Incomplete data

- no closed-form solution
- EM (iterative) algorithm [Dempster, 77], convergence to a local optimum

Incremental data

- advantages of sufficient statistics

$$
\theta_{i, j, k}=\frac{N^{\text {old }} \theta_{i, j, k}^{\text {old }}+N_{i, j, k}}{N^{\text {old }}+N}
$$

- this Bayesian updating can include a forgetting factor

Parameter learning (discriminative)

Complete data

- no closed-form
- iterative algorithms such as gradient descent
no closed-form
iterative algorithms

Parameter learning (discriminative)

Complete data

- no closed-form
- iterative algorithms such as gradient descent

Incomplete data

- no closed-form
- iterative algorithms + EM :-(

BN structure learning is a complex task

Size of the "solution" space

- the number of possible DAGs with n variables is super-exponential w.r.t n [Robinson, 77]

$$
N S(5)=29281 \quad N S(10)=4.2 \times 10^{18}
$$

- an exhaustive search is impossible for realistic n !

One thousand millenniums $=3.2 \times 10^{13}$ seconds

- data can only help finding (conditional) dependences independences Markov Equivalence: several graphs describe the same dependence statements

BN structure learning is a complex task

Size of the "solution" space

- the number of possible DAGs with n variables is super-exponential w.r.t n [Robinson, 77]

$$
N S(5)=29281 \quad N S(10)=4.2 \times 10^{18}
$$

- an exhaustive search is impossible for realistic n !

$$
\text { One thousand millenniums }=3.2 \times 10^{13} \text { seconds }
$$

Identifiability

- data can only help finding (conditional) dependences / independences
- Markov Equivalence: several graphs describe the same dependence statements
- causal Sufficiency: do we know all the explaining variables ?

Structure learning (generative / complete)

Constraint-based methods

- $\mathrm{BN}=$ independence model \Rightarrow find Cl in data in order to build the DAG
ex: IC [Pearl \& Verma, 91], PC [Spirtes et al., 93]
- problem : reliability of CI statistical tests (ok for $n<100$)

Structure learning (generative / complete)

Constraint-based methods

- $\mathrm{BN}=$ independence model
- problem : reliability of Cl statistical tests (ok for $n<100$)

Score-based methods

- $\mathrm{BN}=$ probabilistic model that must fit data as well as possible \Rightarrow search the DAG space in order to maximize a scoring function
ex: Maximum Weighted Spanning Tree [Chow \& Liu, 68], Greedy Search [Chickering, 95], evolutionary approaches [Larranaga et al., 96] [Wang \& Yang, 10]
- problem : size of search space (ok for $n<1000$)

Structure learning (generative / complete)

Constraint-based methods

- $\mathrm{BN}=$ independence model
- problem : reliability of Cl statistical tests (ok for $n<100$)

Score-based methods

- $\mathrm{BN}=$ probabilistic model that must fit data as well as possible
- problem : size of search space (ok for $n<1000$)

Hybrid/ local search methods

- local search / neighbor identification (statistical tests)
- global (score) optimization
- usually for scalability reasons (ok for high n)
- ex : MMHC algorithm [Tsamardinos et al., 06]

Structure learning (discriminative)

Specific structures

- naive Bayes, augmented naive Bayes
- multi-nets
- ...

Structure learning (discriminative)

Specific structures

- naive Bayes, augmented naive Bayes
- multi-nets
- ...

Structure learning

- usually, the structure is learned in a generative way
- the parameters are then tuned in a discriminative way

Structure learning

Incomplete data

- hybridization of previous structure learning methods and EM
- ex : Structural EM
[Friedman, 97]
\simeq Greedy Search + EM
- problem : convergence

A	B	C	D
0	1	2	3
4	$?$	1	0
2	3	5	$?$
		\ldots	
		\ldots	
		\ldots	
1	3	$?$	
3	8	9	0
1	2	4	$?$
1	$?$	3	7
8	5	4	3

Structure learning

$n \gg p$

- robustness and complexity issues
- application of Perturb \& Combine principle
- ex : mixture of randomly perturbed trees
[Ammar \& Leray, 11]

Structure learning

Incremental learning and data

streams

- Bayesian updating is easy for parameters
- Bayesian updating is complex for structure learning
- and other constraints related to data streams (limited storage, ...)
- ex : incremental MMHC [Yasin and Leray, 13]

Structure learning

Integration of prior knowledge

- in order to reduce search space : white list, black list, node ordering [Campos \& Castellano, 07]
- interaction with ontologies
[Ben Messaoud et al., 13]

Outline

(1) BN learning

- Definition
- Parameter learning
- Structure learning
(2) Dynamic BN learning
- Definition
- Learning
(3) Relational BN learning
- Definitions
- Learning with a relational DB
- Learning with a Graph DB
(4) The end

Dynamic Bayesian networks (DBNs)

k slices temporal BN (k-TBN)

 [Murphy, 02]- $k-1$ Markov order
- prior graph $G_{0}+$ transition graph $G \rightarrow$
- for example : 2-TBNs model [Dean \& Kanazawa, 89]

(a) Prior network (b) Transition network

Dynamic Bayesian networks (DBNs)

k slices temporal BN (k-TBN) [Murphy, 02]

- k-1 Markov order
- prior graph $G_{0}+$ transition graph $G \rightarrow$
- for example : 2-TBNs model [Dean \& Kanazawa, 89]

Simplified k-TBN

- k-TBN with only temporal edges [Dojer, 06][Vinh et al, 12]

(c) Transition network with only inter time-slice arcs

DBN structure learning (generative)

Score-based methods

- dynamic Greedy Search [Friedman et al., 98], genetic algorithm [Gao et al., 07], dynamic Simulated Annealing [Hartemink, 05], ...
- for $k-T B N\left(G_{0}\right.$ and G_{\rightarrow} learning)
- but not scalable (high n)

DBN structure learning (generative)

Score-based methods

- dynamic Greedy Search [Friedman et al., 98], genetic algorithm [Gao et al., 07], dynamic Simulated Annealing [Hartemink, 05], ...
- for $k-T B N$ (G_{0} and G_{\rightarrow} learning)
- but not scalable (high n)

Hybrid methods

- [Dojer, 06] [Vinh et al., 12] for simplified k-TBN, but often limited to $k=2$ for scalability
- dynamic MMHC for "unsimplified" 2-TBNs with high n [Trabelsi et al., 13]

Outline

(1) BN learning

- Definition
- Parameter learning
- Structure learning
(2) Dynamic BN learning
- Definition
- Learning
(3) Relational BN learning
- Definitions
- Learning with a relational DB
- Learning with a Graph DB
(4) The end

Motivations

Flat data

- No relational model
- Learning probabilistic dependencies between
variables

Motivations

Flat data

- No relational model
- Learning probabilistic dependencies between variables

Relational DB

- Relational schema is given
- Learning prob. dep. between variables, but more complex !

Motivations

Flat data

- No relational model
- Learning probabilistic dependencies between variables

Relational DB

- Relational schema is given
- Learning prob. dep. between variables, but more complex !

Graph DB

- Relational schema?
- Learning prob. dep. between variables ?

Relational schema

relational schema \mathcal{R}

- classes + attributes
- reference slots (e.g.

- inverse reference slots (e.g User.User ${ }^{-1}$)

Relational schema

relational schema \mathcal{R}

- classes + attributes
- reference slots (e.g.

Vote.Movie, Vote.User)

- inverse reference slots (e.g.

User.User ${ }^{-1}$)

(inverse) reference slots

Relational schema

relational schema \mathcal{R}

- classes + attributes
- reference slots (e.g.

Vote.Movie, Vote.User)

- inverse reference slots (e.g.

User.User ${ }^{-1}$)

Relational schema

relational schema \mathcal{R}

- classes + attributes
- reference slots (e.g.

Vote.Movie, Vote.User)

- inverse reference slots (e.g.

User.User ${ }^{-1}$)

- slot chain $=$ a sequence of (inverse) reference slots
- ex: Vote.User.User ${ }^{-1}$.Movie: all the movies voted by a particular user

Relational skeleton

Instance \mathcal{I}

- set of objects for each class
- with a value for each reference slot and each attribute
- == a "populated" database

Relational skeleton $\sigma_{\mathcal{R}}$

- Instance without attribute values

Probabilistic Relational Models

[Koller \& Pfeffer, 98]

Definition

A PRM Π associated to \mathcal{R} :

- a qualitative dependency structure \mathcal{S} (with possible long slot chains and aggregation functions)
- a set of parameters $\theta_{\mathcal{S}}$

User.Gender	
M	F
0.4	0.6

Probabilistic Relational Models

Definition

Aggregators

- Vote.User.User ${ }^{-1}$.Movie.genre \rightarrow Vote.rating
- movie rating from one user can be dependent with the genre of all the movies voted by this user
- how to describe the dependency with an unknown number of parents?
- solution : using an aggregated value, e.g. $\gamma=M O D E$

DAPER

Another probabilistic relational model [Heckerman \& Meek, 04]

Definition

- Probabilistic model associated to an Entity-Relationship model
- Classes $=\{$ Entity classes + Relationship classes \}

Learning from a relational datatase

PRM/DAPER learning

- finding the probabilistic dependencies and the probability tables from an instantiated database
- relational schema is known, but ...
- several situations / PRM extensions

Learning from a relational datatase

Attribute uncertainty

- Input : relational skeleton (all the objects and relations), some attributes
- Objective : predict only missing attributes

Learning from a relational datatase

Reference uncertainty

- Input : partial relational skeleton (all the objects, but some relations are missing)
- Objective : predict missing attributes and " foreign keys"

Learning from a relational datatase

Existence uncertainty

- Input : partial relational skeleton (all the entity objects, but some relationship objects are missing)
- Objective : predict existence of relationships between entity objects

PRM/DAPER learning with AU

Relational variables

- finding new variables by exploring the relational schema
- ex: student.reg.grade, registration.course.reg.grade, registration.student reg.course.reg.grade, ...
\Rightarrow adding another dimension in the search space
\Rightarrow limitation to a given maximal slot chain length
\square relational PC [Maier et al., 10] relational CD [Maier et al., 13] don't deal with aggregation functions

PRM/DAPER learning with AU

Relational variables

\Rightarrow adding another dimension in the search space
\Rightarrow limitation to a given maximal slot chain length
Constraint-based methods

- relational PC [Maier et al., 10] relational CD [Maier et al., 13]
- don't deal with aggregation functions

Greedy search [Getoor et al., 07]

PRM/DAPER learning with AU

Relational variables

\Rightarrow adding another dimension in the search space
\Rightarrow limitation to a given maximal slot chain length
Constraint-based methods

- relational PC [Maier et al., 10] relational CD [Maier et al., 13]
- don't deal with aggregation functions

Score-based methods

- Greedy search [Getoor et al., 07]
relational MMHC

PRM/DAPER learning with AU

Relational variables

\Rightarrow adding another dimension in the search space
\Rightarrow limitation to a given maximal slot chain length
Constraint-based methods

- relational PC [Maier et al., 10] relational CD [Maier et al., 13]
- don't deal with aggregation functions

Score-based methods

- Greedy search [Getoor et al., 07]

Hybrid methods

- relational MMHC [Ben Ishak et al., 15]

PRM/DAPER learning with RU

Need for partitionning

- The missing foreign key is considered as a random variable
- We need to partition the similar "target" objects in order to obtain a generic model

How to partition

- With object attributes [Getoor et al.] = clustering
- With relational information = graph partitionning
- With both : [Coutant et al., 15]

Graph database

Definition

- Data is described in a graph, with nodes and relationships

Graph database

Definition

- Data is described in a graph, with nodes and relationships
- Attributes can be associated to both.

Graph database

Definition

Properties

- Scalability / large data (no join operation, only graph traversal)

Schema-free, no

Graph database

Definition

Properties

- Scalability / large data (no join operation, only graph traversal)
- Schema-free, no relational schema

Learning from a Graph database

Our assumptions

- Data is "organized" / stored by approx. following some meta/ER model.

[Elabri, in progress]

Learning from a Graph database

Our assumptions

- Data is "organized" / stored by approx. following some meta/ER model.
- Use of labels in order to "type" nodes and relationships
[Elabri, in progress]

Learning from a Graph database

Our assumptions

- Data is "organized" / stored by approx. following some meta/ER model.
- Use of labels in order to "type" nodes and relationships
- Otherwise, we can't do anything!
[Elabri, in progress]

DAPER learning

ER identification from data

- $\mathrm{E}=$ node labels, $\mathrm{R}=$ relationship labels
- choosing only the most frequent signature $\left(E_{i} \times E_{j}\right)$ for each R

DAPER learning

ER identification from data

- $\mathrm{E}=$ node labels, $\mathrm{R}=$ relationship labels
- choosing only the most frequent signature $\left(\mathrm{E}_{i} \times \mathrm{E}_{j}\right)$ for each R

DAPER learning

DAPER structure learning

Once ER model is identified, we can learn the probabilistic dependencies:

- Attribute uncertainty : predicting attribute value only
- Reference uncertainty predicting the target node for an existing relation
- Existence uncertair ty predicting a relationship between two existing nodes ?

DAPER learning

DAPER structure learning

Once ER model is identified, we can learn the probabilistic dependencies:

- Attribute uncertainty : predicting attribute value only
- Reference uncertainty : predicting the target node for an existing relation ?

DAPER learning

DAPER structure learning

Once ER model is identified, we can learn the probabilistic dependencies:

- Attribute uncertainty : predicting attribute value only
- Reference uncertainty : predicting the target node for an existing relation ?
- Existence uncertainty : predicting a relationship between two existing nodes ?

Outline

(1) BN learning

- Definition
- Parameter learning
- Structure learning
(2) Dynamic BN learning
- Definition
- Learning
(3) Relational BN learning
- Definitions
- Learning with a relational DB
- Learning with a Graph DB
(4) The end

Conclusion

Visible face of this talk

- Bayesian networks = powerful tool for knowledge representation and reasoning with data

- Our contributions about BN learning in several contexts

Conclusion

Visible face of this talk

- Bayesian networks = powerful tool for knowledge representation and reasoning with data
- Our contributions about BN learning in several contexts

Conclusion

Visible face of this talk

Todo list, in progress

- Dealing with all the problems in the same time :-)
- Interacting with some probabilistic \& logic frameworks
- Implementation in our software platform PILGRIM

Conclusion

Visible face of this talk

Todo list, in progress

- Dealing with all the problems in the same time :-)
- Interacting with some probabilistic \& logic frameworks

Conclusion

Visible face of this talk

Todo list, in progress

- Dealing with all the problems in the same time :-)
- Interacting with some probabilistic \& logic frameworks
- Implementation in our software platform PILGRIM

One buzzword for the road

BN Learning wrt. 7 Vs of Big Data

- Volume : scalable algorithms and map-reduce implementations
- Variety : flat data, SQL, graph databases, ...
- Velocity/Variability: incremental anytime learning, non stationary data
- Visualization : for user interaction
- Veracity : does the user give accurate data ?
- Value : of data ...

References

PROBABILISTIC GRAPHICAL MODELS PRINCIPLES AND TECHNQUES

One starting point

- [Koller \& Friedman, 09] Probabilistic Graphical Models: Principles and Techniques. MIT Press.

Our publications

- http://tinyurl.com/PhLeray

References

PROBABILISTIC GRAPHICAL MODELS PRINCIPLES AND TECHNIQUES

One starting point

- [Koller \& Friedman, 09] Probabilistic Graphical Models: Principles and Techniques. MIT Press.

Our publications

- http://tinyurl.com/PhLeray

Thank you for your attention

